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Abstract. We investigate analytically and numerically the influence of the type of the photorefractive
nonlinear response on the periodic states (attractors) which occur during feedback controlled 2W-coupling
and correspond to almost 100% diffraction efficiency of the dynamic index grating. In addition to the case
of the local response typical, for example, for LiNbO3 crystals we consider the cases of nonlocal (diffusive)
response (BaTiO3, SBN) and resonant response (DC-biased BSO, BTO, and BGO crystals). It is shown
that the conditions for the transition to the periodic states and their apparent characteristics are strongly
different for the two limiting cases above.

PACS. 42.65.Hw Phase conjugation; photorefractive and Kerr effects – 42.40.Pa Volume holograms –
42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,
and optical spatio-temporal dynamics

1 Introduction

The photorefractive feedback controlled 2W-coupling has
been under experimental and theoretical study during the
last decade [1–8]. It was found first for LiNbO3 crystals [2–
5] that an electronic feedback loop, governing the input
phase of the signal beam, produces dramatic changes in
the characteristics of 2W-mixing. In particular, this feed-
back has allowed the suppression of light-induced scatter-
ing, the stabilization of the input light fringes, and the
100% diffraction efficiency of the recorded index grating.

The first theoretical formulation of the feedback prob-
lem was proposed in [6]. It adapted the idea of a π/2 phase
shift between the diffracted and transmitted components
of the signal (S) beam at the crystal output [2]. Numerical
simulations of the derived equations have shown [6] that
the nonlinear system approaches quickly a state where the
dynamic index grating is fully diffractive and the formu-
lated (ideal) π/2 feedback conditions fail. This ideal model
is therefore applicable only to the initial stage of develop-
ment.

The breakthrough in the understanding of the feed-
back operation was made in [7,8]. It was shown that the
inertia of the feedback loop is the key element of the per-
manent operation of the whole system. Unless the trans-
mitted component of the signal beam is very close to
zero, this inertia is of minor importance. At this point,
the diffraction efficiency of the dynamic index grating, η,
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approaches unity. Close to unity the output phase differ-
ence between the diffracted and transmitted components
of the S-beam becomes non-physical. The feedback loop
fails to adjust this phase difference to π/2 and the system
moves by inertia. At this stage, the diffraction efficiency
is decreasing which brings the feedback into play again to
increase η.

In this situation we have instead of steady-states (typ-
ical of 2W-coupling), certain periodic states (attractors).
For an attractor, the diffractivity η oscillates close to
unity, the input phase of the S-beam, ϕs(t), possesses both
a linear trend and a periodically oscillating component,
and the point on the complex plane mapping the output
amplitude of a wave testing the index grating is moving
along a periodic orbit. This behavior is easily recognizable
in experiment [7,8].

An essential feature of the current theoretical studies
of the feedback-controlled 2W-coupling is the dominance
of numerical methods over analytical ones. Analytical con-
siderations are involved mostly for derivation of the initial
nonlinear equations and some auxiliary functions. Even for
the ideal inertia-free model there is still no general proof
of the assertion regarding the maximization of η by the
feedback. The belief in this assertion is based on numer-
ous experiments and numerical calculations.

Until now, theoretical and experimental studies of
the periodic states were concerned with the case of the
so-called local photorefractive response, which is typical
for example for LiNbO3 crystals. There are, however,
two other important types of photorefractive nonlinear
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Fig. 1. Schematic of a feedback experiment; PM is a piezo-
mirror, PD is a photo-diode, and EB is an electronic block.

response. The first of them is the nonlocal (diffusive) re-
sponse [9] which corresponds to the diffusive charge trans-
port mechanism in slow photorefractive ferroelectrics like
BaTiO3 and SBN. The second one can be called the reso-
nant response. It is typical of fast photorefractive crystals
(the sillenites, BSO, BTO, and BGO, the semiconductors
GaAs, CdTe, etc.) placed in an electric DC-field [9,10].
The distinctive feature of this response is that it can be
strongly enhanced under the condition of resonance be-
tween an eigenfrequency of the material and the frequency
of an external driving force [11]. Here one can expect
new features in behavior of the feedback controlled 2W-
coupling.

The aim of this paper is an analysis of the periodic
states governed by the feedback for the cases of nonlo-
cal and resonant response. While the specific results of
this study are obtained numerically, some important judg-
ments on the expected region of the variable parameters
relevant to the periodic states are deduced analytically on
the basis of the theory of fast phase modulation [12,13].

2 Initial equations

A schematic diagram of a feedback experiment is shown in
Figure 1. Two light beams, the reference (R) and signal
(S) are incident on the crystal. The input phase of the
S-beam, ϕs, is governed, via an electronic loop, by out-
put optical parameters, see [6,7] and references therein for
more details. The input phase of the R-beam is assumed
to be constant. The initial set of dimensionless equations
for the beam amplitudes R and S and the grating ampli-
tude E is not different from that used in [8]; we cast them
in the form

∂ξ R = iES (1)
∂ξ S = iE∗R (2)(

eiδ ∂τ + 1
)

E = eiθ R S∗ (3)

where ξ and τ are the dimensionless coordinate and time,
while θ and δ are the characteristic phases that specify

the type of the nonlinear response, see also below. The
amplitudes R and S are normalized in such a way that
the integral of motion |R|2 + |S|2 = 1.

The feedback condition supplementing the set (1–3)
has the form of an ordinary first-order differential equation
for the input phase ϕs [7,8]:

ϕ̇s = − 1
τf

|R0S0|
√

η(1 − η) cosΦs. (4)

Here R0 and S0 are the input values of R and S, τf is
the dimensionless response time of the electronic feedback
loop, η the diffraction efficiency, and Φs the phase differ-
ence between the diffracted and transmitted components
of the signal beam at the crystal output (ξ = ξ0). This
phase difference can be expressed algebraically (and non-
linearly) through the input and output values of R and
S [8]. As long as the factor η(1 − η) is far from zero, Φs

relaxes very quickly (in a time ∼ τf � 1) to the value π/2,
i.e., the ideal feedback condition takes place. As soon as
η(1 − η) approaches zero, the phase ϕs cannot react to
the feedback signal and the phase difference Φs deflects
strongly from the ideal π/2 value.

The dimensionless coordinate ξ and time τ can indeed
be expressed through the propagation coordinate x and
the real time t. The form of this connection depends, how-
ever, on the type of the nonlinear response. The case of the
local nonlinear response has been considered in [6–8]. Two
other limiting cases are of interest in the present study.

The nonlocal response. This case corresponds to δ = 0
and θ = ±π/2. Physically, both the signs are equivalent
(in what follows we restrict ourselves to the sign + for con-
venience). The index distribution formed by a static light
pattern is proportional to the intensity gradient, τ = t/td
and ξ = x (πn3rED/λ), where td is the Maxwell relax-
ation time, n the non-perturbed refractive index, r the
relevant electro-optic coefficient, λ the wave length, and
ED the characteristic diffusion field which depends on the
temperature and the period of the light interference pat-
tern Λ. Typically, the diffusion field is as large as a few
kV/cm in 2W-coupling experiments. No external electric
field is expected to be applied to the crystal.

The resonant response. In this case we have θ = 0,
and 0 < (π/2)− δ � 1. To make the physical situation in
question more clear, we transform equation (3) into

(∂τ − i + cos δ)E = −i R S∗. (5)

When the right-hand side equals zero, this equation de-
scribes a weakly damped oscillator and in our case it cor-
responds to a weakly damped space-charge wave of pe-
riod of Λ [11]. Correspondingly, we identify cos δ with the
inverse of the quality factor of this wave, Q−1, and the
dimensionless time τ with the product ω0t, where ω0 is
the eigenfrequency of the space-charge wave. The quality
factor Q is an even function of the applied DC-field E0; in
crystals of the sillenite family (BSO, BTO, and BGO) and
for typical experimental conditions it is as large as (5–7).
Correspondingly, we estimate cos δ = 0.15–0.2. The fre-
quency ω0 is an odd function of E0. Switching from E0 to
−E0 means changing sign before the imaginary unit in the
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left-hand side of equation (5). Both these cases are phys-
ically equivalent. To obtain the relation between ξ and x
one has to replace ED with |E0| in the expression for ξ
given in the previous paragraph.

The specific feature of the resonant case is a consider-
able increase of the grating amplitude E when the right-
hand side of equation (5) (i.e., the effective driving force)
is at resonance with the eigen mode. If the feedback is
able to find this resonance, one can expect a decrease of
the dimensional crystal thickness ξ0, necessary to achieve
a 100% diffraction efficiency.

3 Existence curves

On the basis of previous experience with the local re-
sponse [6–8], the operation mode of the feedback can
qualitatively be explained as follows. The ideal feedback
always tends to maximize η. For thin crystals (i.e., a
sufficiently small ξ0) the value of ηmax is indeed less than
unity. It corresponds to a steady-state for 2W-mixing and
the only fitting parameter in “possession” of the feedback
is the frequency detuning Ω between the R- and S-beams.
This detuning is accomplished by the corresponding linear
change of the feedback-controlled input phase, ϕs = Ωτ .
The value of ηmax and the corresponding detuning Ωmax

are functions of the thickness ξ0 and the input intensity
ratio β = |S0|2/|R0|2. The form of these functions depends
on the type of the nonlinear response. With increasing ξ0,
the value of ηmax reaches unity. At this threshold we still
have no periodic state but merely a steady state.

Some simple and important judgments concerning the
possibility to adjust η to unity in a steady state can be
made from general considerations. To get η = 1, one has
to adjust to zero both the real and imaginary parts of the
transmitted component of the S-beam (or R-beam). Thus
we have two constraints on the variable parameters ξ0, β,
and Ω which means that ξ0 = ξth(β) and Ω = Ωth(β) are
certain functions of the input beam ratio. For each value of
β there is therefore a single value of ξ0 compatible with the
condition η = 1. The next judgment which follows from
this consideration of the steady state is also important:
for ξ0 > ξth the efficiency η drops in value and it cannot
be adjusted to unity by changing Ω in the general case.

The role of the feedback in the case of an excessive
crystal thickness [ξ0 > ξth(β)] is in the introduction of an
additional periodic phase modulation into ϕs(τ) to com-
pensate the overshoot. If this periodic modulation is fast
(which is the case when the feedback response time τf is
sufficiently short) its effect on the characteristics of 2W-
coupling can be described by the only new parameter ε
defined by the relation

ε = |〈exp(iϕp)〉| , (6)

where the brackets mean averaging over the oscillation
period T � 1 and ϕp(τ) is the T -periodic component of
ϕs(τ). With no modulation we have ε = 1, whereas for a
strong modulation ε � 1. The presence of this new vari-
able parameter allows the feedback to adjust η to unity for

ξ0 > ξth. The specific form of the periodic phase modula-
tion (the form of the function ϕp(τ)) is beyond qualitative
and analytical considerations.

As follows from the above analysis, a periodic state
with η � 1 can exist only when the dimensional crystal
thickness ξ0 exceeds the threshold value ξth(β). To find
this function, it is sufficient to solve the set (1–3) in steady
state to find η and to meet the condition η = 1. The
final result can be easily extracted from equations (30–40)
of [13] by setting ε = 1. We apply it below to the cases
of the local, nonlocal, and resonant response to separate
the regions where the periodic states with η = 1 can and
cannot exist.

The local response. Here we set θ = 0, δ = 0. The
corresponding threshold values ξth and Ωth are

ξth = π +
1
π

ln2 β , Ωth = ± 1
π

ln β. (7)

According to these relations, the minimum threshold
thickness, ξmin

th = π, corresponds to β = 1 and Ωth = 0.
Furthermore we have ξth(β) = ξth(1/β), i.e., the threshold
thickness is symmetric to interchange of the pump inten-
sities. The detuning Ωth is an odd function of the pump
difference |S0|2−|R0|2 ≡ (β−1)/(β +1). The correspond-
ing plots are presented in Figure 2. In the case of the local
response, they are in full agreement with the numerical
data of [7,8] relating to the periodic states.

The nonlocal response, θ = π/2, δ = 0. Here we have
at the threshold:

ξth = −
(

ln β +
π2

ln β

)
, Ωth = ± π

lnβ
· (8)

The minimum dimensionless threshold thickness ξmin
th is

here 2π and it corresponds to β = exp(−π) � 0.043 and
Ωth = ±1. In other words, the periodic states are ex-
pected here in the region of fairly small intensity ratio, see
also Figure 2. For the parameters of SBN crystals [9] and
ED = 3 kV/cm we estimate the minimum crystal thick-
ness xmin

th ≈ 3 mm. This means that the periodic states
are available but can hardly be driven very far from the
threshold.

The resonant response, θ = 0, 0 < cos δ � 1. In this
case

ξth =
π2 + ln2 β

π + lnβ tan δ
, Ωth = − ln β

π cos δ + lnβ sin δ
· (9)

As a function of the intensity ratio, the dimension-
less threshold thickness has a minimum at β �
exp(π tan(δ/2)) � 1. Here we have

ξmin
th =

2π cos δ

1 + cos δ
=

2π

1 + Q
· (10)

Since Q � 1, it is considerably smaller than the minimum
values of ξmin

th (β) found earlier for the local and nonlocal
responses. For the sillenite parameters, with a DC-field
E0 = 10 kV/cm and Q = 6, we estimate xth ≈ 3 mm. Thus
the periodic states are also attainable here. The value
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Fig. 2. Dependencies of the threshold thickness ξth and the
threshold frequency detuning Ωth on the input intensity ratio
β for the local (1), nonlocal (2), and resonant (3) nonlinear
response. For curve 3 we have accepted δ = 80.4◦, i.e., Q � 6.

of the frequency detuning at the threshold Ωth ≈ −1.
Figures 2a and 2b illustrate the dependences ξth(β) and
Ωth(β). Note a very slow growth of ξth(β) for the curve 3
after reaching the minimum.

The analysis performed in this section gives clear
guidelines of where to search for the periodic states in the
cases of local, nonlocal, and resonant nonlinear response.

4 Periodic states

The case of the local response has been analyzed in detail
in [7,8]. As a representative example we consider here the
periodic state for β = 1 and ξ0 = 6 � 1.9 ξmin

th .
Figure 3a shows the trajectory Ss(ξ0, τ) on the com-

plex plane during a time period of T � 0.92. The ampli-
tude Ss(ξ0) describes the transmitted component of the
unit S-beam testing the spatial grating [6,8]. To obtain
the corresponding time dependencies, the set (1–4) was
simulated with a zero initial condition for E up to τ ≈ 50,
when the trajectory Ss(ξ0, τ) becomes strictly periodic.
Because of the periodicity of the state, the behavior of the
diffraction efficiency η = |Ss(ξ0)|2 is shown in Figure 3b
on a time interval longer than the period T . The corre-
sponding time variable is denoted as ∆τ . One sees that

 

 

Fig. 3. The periodic state for the local response, ξ0 = 6, β = 1,
and τ−1

f = 103: (a) the attractor trajectory of the amplitude
Ss(ξ0, τ ) on the complex plane; (b) the periodic time depen-
dence of the diffraction efficiency η; (c) the time dependence
of the input phase ϕs.

during the whole period, η oscillates in the close vicinity
of unity. Three revolutions around the zero-point occur
during this time and the three apparent maxima of η(∆τ)
correspond to the minimum distances of the trajectory
from the origin. The input phase behavior is shown in
Figure 3c. The dependence ϕs(∆τ) consists of a periodic
part superimposed on a linear trend.

The value of the frequency detuning Ωs = 〈ϕ̇s〉 here is
� −20.5. At first sight, such a large value of Ωs is surpris-
ing because one would expect that |Ωs| � 1 on the basis
of the results of the previous section. It should be empha-
sized, however, that the dependence exp(iΩsτ) becomes
T -periodic when the product ΩsT is an integer multiple
of 2π. In other words, the linear trend of ϕs(∆τ) must
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Fig. 4. The periodic state for the nonlocal response, ξ0 =
12, β = 1/23, and τ−1

f = 103: (a) the attractor trajectory of
the amplitude Ss(ξ0, τ ) on the complex plane; (b) the periodic
time dependence of the diffraction efficiency η; (c) the time
dependence of the input phase ϕs.

be treated here as a periodic phase modulation. One can
check that ΩsT � −6π in our case.

Now we consider the case of the nonlocal response,
δ = 0, and θ = π/2. With ξ0 = 12 � 1.9 ξmin

th we were not
able to find any periodic states for β ∼ 1, which corre-
sponds to the highest input contrast of the light interfer-
ence pattern at the input. In this region, the system always
approaches a steady state while η monotonously grows to
a value which is considerably smaller than 1. The same is
true for β � 1.

For the values of the pump ratio β ≈ 0.05 we
have managed, nevertheless, to find the expected periodic
states. Figure 4a shows a representative example of an
attractor. It has become settled after τ � 50 and con-

 

Fig. 5. Time dependencies of the diffraction efficiency η and
the input phase ϕs for the resonant response, ξ0 = 1.5, β =
1/14, Q = 1/ cos δ = 6, and τf = 10−3.

sists of only one loop. Only one revolution around the
origin occurs during a period of T � 1.03. The distance to
zero varies not very strongly with trajectory, in contrast
to Figure 3a. The corresponding dependencies η(∆τ) and
ϕs(∆τ) with a time ∆τ varying from 0 to 1.5 are plot-
ted in Figures 4b and 4c. Here the frequency detuning
Ωs � −5.85, and the difference 1− η � 0.01. The periodic
component of the phase ϕs is here fairly weak.

With decreasing thickness ξ0, the transient time in-
creases dramatically and for ξ0 − ξth � 1 the periodic
states become practically unattainable. This is similar in
physics to the effect of critical slowing down known for
many threshold (critical) phenomena.

Let us turn now to the case of the resonant response,
which is expected to be the most interesting one. The dis-
tinctive features of this case can be detailed as follows. Ba-
sically, two characteristic times, 1 and cos δ = Q−1 � 1,
are present on the left-hand side of equation (5). When far
from the resonant steady-state with Ω � 1, the system de-
velops with the characteristic time τ ∼ 1. At this stage the
efficiency η is considerably less than unity. When the res-
onant state is approached, we can expect that Q becomes
the proper unit to measure the dimensional time τ . At this
stage, η can approach unity. We should also keep in mind
that only large beam ratios, β � exp[π tan(δ/2)] � 1, are
expected to be promising for the periodic states.

Figure 5 shows the dependences η(τ), and ϕs(τ) for
ξ0 = 1.5, Q = 6, and β = 1/14. One sees that after a
fairly short time (τ ≈ 4) the system arrives at a steady
state with moving light fringes, η � 0.013, and Ωs � 2.3.
No periodic state occurs in this case.
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Fig. 6. Transient behavior and the periodic state for the res-
onant response, ξ0 = 1.5, β = 14, Q = 1/ cos δ = 6, and
τf = 10−3. The figures (a) and (b) show the initial stage of
the time dependencies of the diffraction efficiency η and the
input phase ϕs respectively. The plot (c) exhibits the attractor
trajectory of the amplitude Ss(ξ0, τ ) on the complex plane.

The situation changes dramatically when we inter-
change the beam intensities, i.e., reverse the intensity
ratio, see Figure 6. The diffraction efficiency η rapidly
approaches (at τ ≈ 6) unity and experiences then only
very small oscillations. The phase behavior is more com-
plicated. First, for τ � 9 the input phase ϕs does not
experience strong changes. Then (when η is already very
close to unity) it starts to grow almost linearly. At τ ≈ 47
this growth switches abruptly to a linear decrease with
clear periodic oscillations superimposed. No subsequent
changes in this behavior are apparent. On the other hand,
the trajectory becomes periodic only after a rather long
evolution, τ � 150. It consists of two loops as shown in

 

 

Fig. 7. The periodic state for the resonant response, ξ0 = 0.52,
δ = 85◦, β = 18, and τ−1

f = 87: (a) the Ss(ξ0, τ ) attractor on
the complex plane; (b) the periodic time dependence of the
diffraction efficiency η; (c) the time dependence of the input
phase ϕs.

Figure 6c, the period T � 3.07 and the phase slope for the
periodic state is Ωs � −0.94.

To see the main tendencies of the feedback system
behavior we have decreased the value of cos δ = Q−1,
which characterizes the strength of the resonant response,
to � 0.09 (δ = 85◦). The corresponding results for the
periodic state are shown in Figures 7a–7c. The attractor
consists now of three loops and it does not include the ori-
gin. The average tilt of ϕs(∆τ) is negative (Ωs = −0.63)
and the period is much longer than previously, T � 20.1.
The diffraction efficiency oscillates between 0.99 and 1.
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Fig. 8. Phase behavior for the periodic state in the case of the
resonant response, Q � 19, ξ0 = 0.4, and β = 19.7. The period
of the state T � 59.4 and the average slope Ωs � −0.35.

The transient time necessary to reach the periodic state
is about 102. At the same time, the effective rise time (in-
cluding the scaling factor of cos δ � 0.09) is of the order
of 10 and the product T cos δ � 1.8 which is comparable
with the corresponding figures for the previous case. Note
that the feedback response time is chosen here to be rel-
atively long, τ−1

f = 87; this is in line with the assertion
above regarding the increase (∝ Q) of the characteristic
time of development in the vicinity of the periodic states.

Further decrease of cos δ is accompanied by remarkable
changes. The number of fine loops in the bottom of the
trajectory is increased compared to Figure 7c. This pecu-
liarity is accompanied by apparently two-periodic phase
changes, see Figure 8 as an example. Each fine oscilla-
tion of ϕs(∆τ) corresponds to a small loop of the attrac-
tor. The total period T grows as ≈ 1/ cos δ when δ ap-
proaches π/2.

5 Concluding remarks

The most important outcome of this study is that the
feedback controlled periodic states are not restricted to
the case of the local photorefractive response. Two other
important cases, relevant to the nonlocal and resonant
nonlinear response, are also promising for the feedback
studies. Some basic features of the expected behavior, in-
cluding the dependence on the beam ratio and the crystal
thickness, obey rather general requirements deduced from
the form of the existence curves.

The expected periodic behavior is distinguished by
some new elements unknown in the case of the local re-
sponse. These include peculiarities of the phase behavior
for a strong resonant response and a relatively long period
of oscillation. One can expect also a large diversity in the
periodic and quasi-periodic regimes in this case.

To apply the scalar model of beam coupling to the case
of the resonant response, it is necessary to avoid vectorial
coupling effects typical of cubic crystals [14,15]. Crystals
of BTO placed in a sufficiently large (� 7 kV/cm) DC-
field parallel to the [001] axis offer probably the best pos-
sibilities for feedback experiments. With the input linear
polarization perpendicular to [001] the scalar model used
describes the wave amplitudes with a high accuracy.

The use of crystals possessing a nonlocal response like
BaTiO3 and SBN would also be of great interest because
fully diffractive gratings cannot be obtained in this case
in the standard frequency-degenerate experiments.

Financial support from the Deutsche Forschungsgemeinschaft
is gratefully acknowledged.
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